POWER IS NOTHING WITHOUT CONTROL
INDEX

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SAFETY</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>IN-BUILT SAFETY SYSTEMS</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>SAFETY CONSIDERATIONS</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>USER RESPONSIBILITIES</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>HOW TO USE THIS MANUAL</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>STANDARDS</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>INSTALLATION</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>UNIT TYPE</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>LOCATION (CHASSIS TYPE)</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>LOCATION (COMPLETE STARTER)</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>CABLELING</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>BYPASS CONTACTORS</td>
<td>5</td>
</tr>
<tr>
<td>2.6</td>
<td>POWER TERMINALS</td>
<td>6</td>
</tr>
<tr>
<td>2.7</td>
<td>CONTROL TERMINALS</td>
<td>7</td>
</tr>
<tr>
<td>2.8</td>
<td>C.T TERMINALS</td>
<td>7</td>
</tr>
<tr>
<td>2.9</td>
<td>J.S.T. SOCKET</td>
<td>9</td>
</tr>
<tr>
<td>2.10</td>
<td>RELAY TERMINALS</td>
<td>9</td>
</tr>
<tr>
<td>2.11</td>
<td>GATE/CATHODE TERMINALS</td>
<td>9</td>
</tr>
<tr>
<td>3.0</td>
<td>KEYPAD AND DISPLAY</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>LAYOUT</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>HOW TO USE THE KEYPAD</td>
<td>11</td>
</tr>
<tr>
<td>4.0</td>
<td>SCREENS</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>START-UP SCREENS</td>
<td>13</td>
</tr>
<tr>
<td>4.2</td>
<td>INFORMATION SCREENS</td>
<td>13</td>
</tr>
<tr>
<td>4.3</td>
<td>GRAPHS</td>
<td>14</td>
</tr>
<tr>
<td>5.0</td>
<td>USER MENU</td>
<td>15</td>
</tr>
<tr>
<td>5.1</td>
<td>MOTOR PROTECTION</td>
<td>15</td>
</tr>
<tr>
<td>5.2</td>
<td>MOTOR START MODES</td>
<td>15</td>
</tr>
<tr>
<td>5.3</td>
<td>GRAPH</td>
<td>16</td>
</tr>
<tr>
<td>5.4</td>
<td>CONTROL</td>
<td>17</td>
</tr>
<tr>
<td>6.0</td>
<td>MOTOR STOP MODES</td>
<td>17</td>
</tr>
<tr>
<td>6.1</td>
<td>NOTES-OPTIONS MENU</td>
<td>18</td>
</tr>
<tr>
<td>6.2</td>
<td>BYPASS CONTACTOR</td>
<td>19</td>
</tr>
<tr>
<td>6.3</td>
<td>UNDERLOAD TRIP</td>
<td>19</td>
</tr>
<tr>
<td>6.4</td>
<td>SHEAR-PIN TRIP</td>
<td>19</td>
</tr>
<tr>
<td>6.5</td>
<td>AUTO RESET/RESTART</td>
<td>19</td>
</tr>
<tr>
<td>6.6</td>
<td>OVERLOAD PRE-ALARM</td>
<td>19</td>
</tr>
<tr>
<td>6.7</td>
<td>CIRCUIT DIAGRAMS</td>
<td>20</td>
</tr>
<tr>
<td>7.0</td>
<td>PROGRAMMABLE INPUTS</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>PROGRAM 1</td>
<td>21</td>
</tr>
<tr>
<td>7.2</td>
<td>PROGRAM 2</td>
<td>21</td>
</tr>
<tr>
<td>7.3</td>
<td>PROGRAM 3</td>
<td>21</td>
</tr>
<tr>
<td>7.4</td>
<td>PROGRAM 4</td>
<td>21</td>
</tr>
<tr>
<td>7.5</td>
<td>LIST OF PROGRAM INPUTS</td>
<td>21</td>
</tr>
<tr>
<td>8.0</td>
<td>CIRCUIT DIAGRAMS</td>
<td>22</td>
</tr>
<tr>
<td>8.1</td>
<td>PROGRAMMABLE OUTPUTS</td>
<td>23</td>
</tr>
<tr>
<td>8.2</td>
<td>PROGRAMMABLE RELAY 'A'</td>
<td>23</td>
</tr>
<tr>
<td>8.3</td>
<td>PROGRAMMABLE RELAY 'B'</td>
<td>23</td>
</tr>
<tr>
<td>8.4</td>
<td>PROGRAMMABLE FUNCTIONS</td>
<td>23</td>
</tr>
<tr>
<td>9.0</td>
<td>SIDE NOTES AND TABLES</td>
<td>24</td>
</tr>
<tr>
<td>9.1</td>
<td>ENGINEERS MENU</td>
<td>25</td>
</tr>
<tr>
<td>9.2</td>
<td>PIN NUMBER ENTRY</td>
<td>25</td>
</tr>
</tbody>
</table>

TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>TROUBLE SHOOTING</td>
<td>26</td>
</tr>
<tr>
<td>10.1</td>
<td>THE SOFT STARTER DOES NOT RUN</td>
<td>26</td>
</tr>
<tr>
<td>10.2</td>
<td>THE STARTER TRIPS ON FIRING FAULT</td>
<td>27</td>
</tr>
<tr>
<td>10.3</td>
<td>THE STARTER TRIPS ON OVERLOAD FAULT</td>
<td>28</td>
</tr>
<tr>
<td>10.4</td>
<td>THE STARTER TRIPS ON SHEARPIN FAULT</td>
<td>29</td>
</tr>
<tr>
<td>10.5</td>
<td>THE STARTER DOES NOT ACCELERATE</td>
<td>30</td>
</tr>
<tr>
<td>10.6</td>
<td>THE STARTER DOES NOT SOFT STOP</td>
<td>31</td>
</tr>
<tr>
<td>10.7</td>
<td>THE STARTER DOES NOT BRAKE STOP</td>
<td>32</td>
</tr>
</tbody>
</table>

SYSTEM DRAWINGS INDEX

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DRAWINGS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQM2K-B</td>
<td>BASIC SYSTEM-PUSHBUTTONS</td>
<td>34</td>
</tr>
<tr>
<td>TQM2K-B</td>
<td>BASIC SYSTEM-RELAY</td>
<td>34</td>
</tr>
<tr>
<td>TQM2K-B</td>
<td>EMERGENCY STOP SYSTEM</td>
<td>35</td>
</tr>
<tr>
<td>TQM2KB</td>
<td>EMERGENCY STOP SYSTEM-BUTTONS</td>
<td>36</td>
</tr>
<tr>
<td>TQM2KB</td>
<td>EMERGENCY STOP SYSTEM-RELAY</td>
<td>36</td>
</tr>
</tbody>
</table>
Remember before installation

- Check that documentation is included.
- Inspect the unit for damage.
- Check serial No. data against your requirements.
- Do not attempt any work on the unit before reading the section on safety.
- The user is responsible for making sure that none of the in-built safety systems are overridden.
- On all chassis units the earth connection should be wired to the panel star point earth.
1.0 SAFETY

1.1 In-built safety systems

The TORQ-MASTER 2000 soft starter is fitted as standard with the following safety and protection circuits:

- Motor overload protection.
- Motor underload protection.
- Load monitor.
- Over temperature.
- Instantaneous over current trip.
- Phase loss.
- Thermistor trip circuit.
- Limitation on starts per hour.
- Stalled motor protection.
- Motor fault.

All chassis mounting soft starters are fitted with an earth connection which must be wired to the control panel star point earth.

The chassis units are to IP2X protection, that is, touchproof by direct contact, although some live parts may be accessible by angled contact.

1.2 Safety considerations

This instruction manual is an essential part of the soft start device and must be:

- Available to competent personnel at all times.
- Read prior to installation or commissioning.
- Observed with regard to safety and risk management.

The safety instructions in this manual are described so they can be understood by persons trained in Electrical Engineering. Such personnel should have at their disposal the appropriate tools and testing equipment to enable a safe installation.

Such personnel must obtain any particular or general permits relating to local regulations and meet any requirements regarding:

- Safety of personnel.
- Product disposal.
- Environmental protection.
- Packaging disposal

NOTE The safety measures outlined must remain in force at all times. Should questions or uncertainties arise, please contact your supplier.

1.3 User responsibilities

DANGEROUS VOLTAGES EXIST ON THE SOFT STARTER. ALWAYS REMOVE POWER BEFORE SERVICING

DO NOT MEGGER ANY PART OF THE UNIT

- It is a legal requirement that soft starters are protected by means of an isolating switch. It is recommended that a lockable isolator or MCCB is installed so that maintenance can be carried out safely.
- By definition a contactor is not an isolating switch since the coil of the contactor may be inadvertently energised. Do not depend on the circuit being safe if the only isolation is a mains contactor.
- Never place power factor correction capacitors on the output side of the soft starter, only on the input side.
- Every soft starter carries a unique serial number which gives information on the power rating of the unit. It is the users responsibility to ensure that the rating is correct for the application.
- The user must ensure that whenever a STOP is called for that the soft starter assumes a SAFE operating condition at the end of the stop sequence.
- The user must ensure no unauthorised person works on the unit.
- The operator must avoid using any working practises that reduce the safety of the soft starter.

1.4 How to use this manual

This instruction manual will in most cases exceed the requirements of the user but it is advisable to read the notes on safety and installation before proceeding further. Each soft starter is set-up and tested at the factory prior to despatch and in the majority of applications the settings need never be altered. Where menu alterations need to be made the user must consult the manual or Ralspeed’s website before attempting any changes.

1.5 Standards

The unit is manufactured in accordance with the following EC standards:

- IEC 947-4-2
- EN 60 204-1 Electrical equipment of machines, part 1, General requirements and VDE 0113
- EN 50081-2, EMC Emission.
- EN 50081-1, EMC Emission with by-pass.
- EN 50082-2, EMC Immunity
Please use this installation guide

- Check serial number
- Position the unit correctly.
- Never *megger* any part of the soft starter.
- Always fit contactor or relay coil suppressors.
- Keep switching relays close to the PCB.
- Do not take the +24V outside the control panel or run it with high power high current cables.
- ALL earths must be connected.
- In high ambient temperatures it is advisable to force ventilate the control panel.
- Select the bypass contactor according to the formula opposite (see **)
2.0 Installation

2.1 Unit type
Firstly, after unpacking the soft starter the user should check the following:
♦ That there is no obvious damage to the unit.
♦ Check the serial number label, this will give you information about the kW size and type of soft starter you have purchased. For example, TQM2KB-250 would be a 250kw with a built-in bypass contactor. Whilst a TQM2K-250/B would be a 250kw unit designed for use with a bypass contactor supplied and fitted by the user.
♦ It is the users responsibility to make sure the correct unit has been supplied and that it is fit for the use it was intended.

2.2 Location (chassis units)
The standard chassis mounting soft starter is supplied as an IP2X unit designed for installation in industrial switchgear cabinets. The chassis will be supplied with either a built-in bypass contactor or for use with a bypass contactor. In both cases there is minimal heat loss from the starter. It is still good practise, however, to allow 50mm around the unit to allow for some air flow. There is no forced cooling of the heatsink and the only heat generated will be from cables, contactor coils etc. Therefore when mounting the unit in a switchgear cabinet it may be considered the same as a D.O.L. starter. It should be noted that on large power units due to the high running temperature of modern cables and contactor coils forced ventilation of the cubicle is recommended.

2.3 Location (complete starter)
The soft starter may also be supplied as a complete unit built into a floor or wall mounting IP54 sheet steel or polyester cabinet. The user will only need to wire in the mains and motor cables, all the rest of the controls will have been pre-wired. The system wiring schematic will describe any special functions or conditions but in general the standard unit will be supplied as a stand alone motor starter.

2.4 Cabling
It is not necessary to use shielded control cables but it may be needed if the installation is electrically ‘noisy’. Mains and motor cables need not be shielded. When wiring to the soft starter please follow these guidelines:
♦ Terminals 1 to 16 are control inputs. Keep the cables short and avoid, where possible, mixing power and control cables.
♦ Use tri-rated cable for mains and motor.
♦ Terminals 26 to 35 are volt free relay outputs so standard wiring is permissible.
♦ Other than the normal restrictions of volt drop on long motor leads there is no limit to the length of cable used between the soft starter and the motor.
♦ Due to the switching frequencies and distorted wave shape during ramp up (or down) the user must pay particular attention to the tightness of all connections.
♦ On larger kilowatt units cable ducting is provided to enable segregation of power and control cables.

2.5 Bypass contactors
It is highly recommended that all soft starters are fitted with bypass contactors. Section 2.1 details the two chassis types available. In the case of the TQM2KB version the contactor has been fitted by the Factory, so the user need only connect mains, motor and control wiring to have a fully operational system. However, in the case of the type TQM2K___/B chassis the user will have to fit the bypass contactor. The connection details are covered in section 11.0 but the rating should follow this formula:

FULL LOAD CURRENT OF THE MOTOR + 15%
And then choose an AC1 rating closest to, but above that figure.
E.g. FLR = 100A + 15% = 115A nearest contactor rating is 125A at AC1 so this should be the choice.
The reason for the AC1 rating is because of the unique software sequence within the Torq-master unit. Unless specifically overridden the bypass contactor cannot energise until the current has dropped to full load current or less. When a stop command is given and the chosen stop mode is freewheel the software de-energises the BPC and briefly turns the thyristors on so that the contactor does not ‘break’ any current. Although the bypass contactor is energised and effectively ‘shorting out’ the thyristors all the protective features such as overload, shearpin, etc. are still fully functional.

IMPORTANT
THE BYPASS CONTACTOR MUST HAVE A COIL SUPPRESSOR FITTED
Circuit diagrams

NOT FITTED
IF BYPASS CONTACTOR IS
BUILT-IN

R S T

RB
SB
TB

U V W

3 PHASE SUPPLY
400V +/- 10%
50/60Hz

BYPASS CONTACTOR
(BPC)

MOTOR

YELLOW = 110V
BLUE = 220V
RED = 440V

VOLTAGE
SELECTION
SOCKET

1 AMP FUSES

CONTROL SUPPLY
110, 220 OR 440V
50/60Hz
[FACTORY SET]

24V+

L1 L2

1 1 1

2 3

2 3

5 7

11 12

13 14 15 16

START/STOP

START/STOP

SINGLE RELAY CONTACT CONTROL
STOP/START PUSH BUTTONS

EARTH POINT

TERMINALS 7, 13, 14 AND 15
ARE PROGRAMMABLE INPUTS
SEE PAGES 20 & 21
SECTIONS 7.1 TO 7.5

MOTOR THERMISTORS
2.0 Installation

2.6 Power terminals

- **R** S T
- **RB** SB TB
- **U** V W

MAINS SUPPLY 3 PHASE 400V ± 10% 50/60HZ
(690v available as an option)

OUTPUT 3 PHASE TO THE LINE SIDE OF THE BYPASS CONTACTOR (THESE TERMINALS ARE NOT FITTED IF THE BYPASS CONTACTOR IS BUILT-IN)

OUTPUT 3 PHASE TO THE MOTOR

These terminals are the input for the electronics power supply input. This input can be 110v, 220v or 440v 50/60hz. This is a factory set input based on customer requirements and is always marked and colour coded. On ‘board’ fusing and voltage selection are under the metal PCB cover. On units with a built-in bypass contactors L2 and L2 are provided as a separate connection or may be pre-wired for 415v.

Terminal 1,1,1, (+ 24v)

There are 3 number ‘1’ terminals in order to avoid doubling up cables. The No 1 terminal is a 24v+ source and is used for all control applications.

TOTAL POWER DRAWN SHOULD NOT EXCEED 300mA AND SHOULD NEVER BE TAKEN OUTSIDE THE PANEL

Terminal 2 (Start)

This is the input start command and should be used with a normally open momentary push button. **THIS IS A LATCHED INPUT**

Terminal 3 (Stop)

Terminal 3 is the input stop command and should be used with a normally closed momentary push button. **FOR RELAY CONTROL OF START/STOP — SEE OPPOSITE**

Terminal 5 (Bypass)

If a bypass contactor is fitted terminal 5 is used to confirm that the contactor has energised. **SEE DIAGRAM OPPOSITE FOR DETAILS**

Terminal 7 (Program 1)

[see page 20/21 section 7.4, 7.5]

Terminal 11 & 12 (Thermistor I/P)

Terminal 13,14 & 15 (Prog’ I/Ps)

[see page 20/21 section 7.4, 7.5]

Terminal 16 (zero volts)

These terminals are dedicated for the use of PTC motor thermistors. Circuit will accept 3 x PTC probes in series of approx 250Ω each. The circuit trips at 2.6KΩ. The circuit voltage is 5v+

These terminals are the three remaining programmable inputs and are the same as program 1

This is the zero volt connection and can be used to provide a ‘common’ for relays or external voltage inputs.
Circuit diagrams

1. BED AND BLACK TWISTED PAIRS

2. JST SOCKET

3. 3 METRE LEAD

FOR WIRING DETAILS ON PROGRAMMABLE RELAYS
SEE PAGES 22 & 23 SECTION 8.1 TO 8.3

PROGRAM RELAY A READY TRIP TOP OF RAMP PROGRAM RELAY B

26 27 28 29 30 31 32 33 34 35

REMOTE DISPLAY AND KEYPAD

TYPICAL CIRCUIT

CONTROL SUPPLY BDC COIL SUPPRESSOR

TRIP BYPASS CONNECTOR

R
S
T

R RG U UX S SG V VG T T3 W W3
2.0 Installation – cont

2.8 C.T. terminals

Terminals 17,18,19 & 20

These four terminals are the input for the current transformers.
ON STANDARD UNITS THESE TERMINALS ARE ALWAYS PRE-WIRED

2.9 J.S.T Socket

Although not terminals the J.S.T. socket is positioned in the terminal block line and is used to connect to the remote keypad. (supplied as standard with a 3mtr lead)

2.10 Relay terminals

Terminals 26 & 27 (Relay A)

Relay A on terminals 26 & 27 is a single pole single throw programmable relay. The contacts are rated at 10A @ 400v.
ONLY ONE FUNCTION CAN BE ASSIGNED AT ONE TIME

Terminals 28,29 & 30 (Ready\Trip)

This is a dedicated relay and is not programmable. It’s function is to provide a ‘READY’ signal with power to L1 & L2 and a ‘TRIP’ signal if the soft starter detects a

Terminals 31 & 32 (Top of Ramp)

The TOP OF RAMP relay is used to energise a bypass contactor and is rated at 10A 400v.

Terminals 33,34 & 35 (Relay B)

This is the second programmable relay and is a single pole changeover type again rated at 10A 400v.

2.11 Gate\Cathode terminals

Terminals R,RG U,UG

R = cathode red phase input RG = gate, red phase.
U = cathode red phase output UG = gate, red phase

Terminals S,SG V,VG

S = cathode yellow phase input SG = gate, yellow phase.
V = cathode yellow phase output VG = gate, yellow phase

Terminals T,TG W,WG

T = cathode blue phase input TG = gate, blue phase.
W = cathode blue phase output WG = gate, blue phase

NOTE
ALL CATHODE LEADS ARE RED
ALL GATE LEADS ARE EITHER YELLOW OR WHITE
Keypad guides

- The LCD display is 2 line 16 character backlit type.
- In case of a fault or trip the display will give the user a readout of the type of fault.
- The information screens cannot be accessed during ramp-up or ramp-down.
- The remote keypad and the main keypad have the same layout and the buttons function in the same way.

Menu listings

<table>
<thead>
<tr>
<th>Button Combination</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 4 SECONDS INPUT PIN NO * PRESS ‘NEXT’</td>
<td>USER MENU</td>
</tr>
<tr>
<td>Hold down Press to access other menus</td>
<td>OPTIONS MENU</td>
</tr>
</tbody>
</table>

From the USER menu press the above button combination to access the other menu settings

* The standard PIN No is 17. Consult your supplier for instructions on how to change this number
Holding the ENTER button down and pressing the NEXT button will take the user through the rest of the menu headings. Pressing the STOP/RESET button at any time will allow an EXIT from the menu and the screen will give instructions on how to save the changes and to return to the ready to start screen.
3.0 Keypad and display

3.1 Layout

![2 line 16 character LCD display]

TORQ-MASTER 2000
READY TO START

Start & enter next previous
Stop & reset Up count & yes Down count & no

3.2 How to use the keypad

To enter the menu, hold down the 0* button for 4 seconds. The display will ask the user to enter a PIN No. This has been set at the Factory to 17, use the ‘up count’ button until 17 appears in the display. Press the NEXT key and the display will show the USER MENU and ask the user to enter the full load current of the motor. Under normal circumstances this value will have been set in the menu during final testing at the Factory. Using the NEXT button will scroll through the menu and enable the user to alter types of ramp i.e. voltage or current or to choose overload curves etc. To alter a setting in any menu the ARROW buttons should be used as described. The full list of features in the BASIC USER MENU is listed on page 15.

After making the changes in any of the menus if the user presses the STOP\RESET button the LCD display will give the instruction to press the button again to exit the menus and save the changes.

To exit the menu and revert to the DEFAULT settings press the STOP\RESET key once the screen will show; TO SAVE CHANGES \ PRESS RESET. Press the NEXT key twice the screen will show TO SET DEFAULTS \ PRESS RESET. The DEFAULT values are set at the time of final test and are designed to run and protect the motor and choosing DEFAULTS will always revert to test values. (please note earlier versions of software did not have the above DEFAULT facility if in doubt contact your supplier)
Start-up and information screens

- READY TO START means the unit is waiting for a start command.
- To enter the menu HOLD THE STOP\RESET BUTTON DOWN FOR FOUR SECONDS AND THEN ENTER THE PIN NUMBER
- Holding down the START\RESET button and pressing the NEXT key will take the user from menu heading to menu heading.
- Using the NEXT button only will display the information screens.
- After entering the event log the screen will show the ‘last’ event. Use the PREV button to ‘backtrack’ through the log.
4.0 Screens

4.1 Start-up screens

- TORQ-MASTER 2000 READY TO START
- TORQ-MASTER 2000 PHASE FAULT
- TORQ-MASTER 2000 FIRING FAULT
- TORQ-MASTER 2000 EMERGENCY STOP

From any of the above screens or at any time the motor is running the user can choose to view the information screens as shown below by pressing the NEXT button.

4.2 Information screens

- AMBIENT TEMP 30C
- MOT CURRENT 000%
- TIME 18:10:54
- DATE 10:09:05
- TORQ-MASTER 2000 RMS volts 402
- SERVICE : EXPIRED 8,500h 15h
- OPEN EVENT LOG PRESS ENTER
- 004 PHASE FAULT 14:35:45 10/09

This screen shows the user the ambient temperature in the area around the soft starter unit. This should not be beyond 45-50°C. Temperatures above this figure can result in the soft starter malfunctioning.

The motor current bar graph gives the user a view of the motor amps and its percentage value in comparison with the full load setting. KW, KVA & COSØ is displayed (only displays with motor running)

The user can display the current time and date by accessing this screen. Any changes can be made in the Engineers menu.

The RMS volts are displayed in this screen and is given as an average of the three phases

Service time for some machines is very important and this screen shows the user the time period between services and the elapsed time. A programmable relay can be configured to give an output signal when the service time is reached.

The unique software package within the soft starter has the ability to log the last 1000 events. This is a rolling log with battery back-up so that the unit can be interrogated at any time. The log will show the time and date of the event and also the event itself.

Explanation

With power to L1 and L2 the first screen will show that the soft starter is ready to start and is waiting for a start command.

When the ready to start screen is shown and a start command is given the unit will check to see if the three phase mains is available, if not, the screen shown opposite will appear.

If a start command is given and the three phase is present but the motor has two or more connections missing the screen will show FIRING FAULT. A damaged thyristor will also give this message

When emergency stop is chosen in the programmable inputs menu, and is actuated, even when a start is called for and mains and motor are connected the unit will not respond until the EM stop circuit is restored to normal.
TIME
CURRENT LIMIT
TIME TO LIMIT
CURRENT DROPS TO FLC OR LESS WHEN MOTOR IS AT FULL SPEED

PAGE 14
5.0 Screens - User menu

TO ENTER THE USER MENU; HOLD DOWN THE STOP:RESET BUTTON FOR 4 SECONDS AND ENTER THE PIN NO (FACTORY SET TO 17)

Screen

5.1 Motor protection

TORQ-MASTER 2000
SET FLC 0000A

next

CHOOSE O/L CURVE
A B C D E

5.2 Motor start up

next

RAMP TYPE
VOLTAGE

next

RAMP UP 10S
KICK TIME 0000ms

next

PEDESTAL 40%
TARGET 100%

OR

RAMP TYPE
CURRENT

next

RAMP UP 00S
I LIMIT 000%

next

TIME LIMIT FOR
I RAMP 00S

Explanation

The user should enter the full load or nameplate current of the motor to be controlled. It is important to enter the correct figure or the overload and other protective devices will not operate correctly.

There is a choice of five different overload curves. This enables the user to match the overload trip point to the load application. Please note these are cold start curves and every ‘start’ will reduce the tripping times.

SEE OVERLOAD CURVES OPPOSITE

After setting the overload curve, pressing the next button will ask the user to choose either a voltage, or a current control ramp-up.

SEE VOLTAGE RAMP CURVE OPPOSITE

If the voltage control ramp is chosen the user will be asked to set the ramp-up time. This is normally Factory set to 10 seconds (max = 240s). The second item in this screen is the kick start facility which gives the motor an instantaneous 70% voltage boost for up to 2 seconds in 200ms steps.

The settings in this screen enable the user to adjust the starting torque and set the final ‘run out’ voltage. The pedestal is normally pre-set to 40% and under most circumstances should not be altered. The target voltage setting is used to give more linear acceleration for some applications, although it is normally set to 100%

SEE CURRENT CONTROL CURVE OPPOSITE

The first question in this screen is RAMP UP and the user must input a value between 1 and 10 seconds which determines how long it will take for the current to rise to the limit. I LIMIT asks the user to set the multiple of full load current that will be the maximum during the ramp to full speed.

In this screen the user must set the length of time allowed at the current limit before the unit trips. The user should try to set this value in order to co-ordinate with existing fuses or breakers
Soft stop and brake stop graphs

Soft Stop

- **Kick Start**
- **Target**
- **Initial**
- **Pedestal**
- **Final**

Ramp Up Time

- **KICK START**
- **TARGET**
- **INITIAL**
- **FINAL**

Ramp Down Time

Maximums & Minimums

- **Ramp down**: 1 to 240 secs
- **Initial**: 100 to 40% V
- **Final**: 20 to 50% V

Ramp time

- 1 to 20 secs

Brake volts

- 10 to 100%

Brake time

- 1 to 240 secs

Reverse

Brake Stop

- **Ramp time**
- **Brake volts**
- **Brake time**

Time in seconds

Soft Stop and Brake Stop Graphs
5.0 Screens - User menu – continued

Within the user menu the stop/start control can be configured to be either via the terminals or the keypad. The latter choice would only be used when the remote panel mounting keypad is used.

The user has a choice of three independent stop modes
- Soft stop (S)
- Brake stop (B)
- Freewheel stop (F)

The ramp setting is in seconds and determines the time between INITIAL & FINAL values.

If soft stop is chosen the user needs to input settings to control the ramp down. The soft stop is used mainly in pumping systems to avoid ‘water hammer’ and damage to the piping. The INITIAL value is a percentage of full volts and should be set so that the speed of the motor is affected immediately. The FINAL value is also a percentage of full volts and is the natural ‘stall’ point of the motor/load.

The brake stop option is of the ‘reverse plug’ type and requires reversing contactors at the front end of the soft starter. The three adjustments the user will have to enter are:
- RAMP - this is in seconds and is the length of time it will take for the voltage to reach the BRAKE VOLTS setting.
- BRAKE VOLTS - this is a percentage of the mains voltage and is dependant on how severe the user requires the braking to be.
- BRAKE TIME - The brake time setting should be set to reverse brake the motor to a stop but not to allow it to go into reverse.

If FREEWHEEL stop is chosen the motor will run down under its own inertia when a stop command is given.
Some points to remember

♦ Always fit coil suppressors to the by-pass contactor and also to the main contactor (if fitted)
♦ If the time for the underload trip is set to zero the unit will trip immediately after top of ramp is reached and the current is at the set point.
♦ Shearpin trip has a maximum setting of 800% of FLC. This setting can be used to co-ordinate with fuses and breakers.
♦ The user should only operate the auto reset\restart providing there is no safety risk in automatically restarting the motor.
♦ The overload pre-alarm is designed to act as a warning that the motor is running at a higher current than is normal.

IT IS HIGHLY RECOMMENDED THAT A BYPASS CONTACTOR IS USED FOR EVERY APPLICATION
The user has the choice in the OPTIONS menu to input various settings to ‘tailor’ the starter to the application. The first setting is BYPASS CONTACTOR. It is highly recommended that this option is always set at YES.

Normally this is set at the factory

Terminals 11 and 12 are the thermistor trip input but the user has to ‘enable’ the function in this menu heading.

The underload trip option allows the user to set a lower than full load current value as an ‘underload’ trip point at which the soft starter will stop after the time set.

The underload reset is used mainly as a substitute for float switches or other forms of level control in the Water industry. For example if the underload is set to a level of current that equates to a pump running dry then the starter will switch off after the trip time setting. After the underload reset time has elapsed the unit will start up automatically and check the current, if it is above the trip value it will continue to run until the current value drops below the trip setting at which time the unit will be stopped and the whole cycle repeats.

The shearpin trip is again a percentage of full load current. When the software detects a rise in current to the level set, the starter trips immediately.

Automatic reset is an option choice for the user to enable up to 3 automatic resets after a fault. The reset time is for the user to allow a time scale between resets. After a fault and with the auto reset enabled the unit will only restart if the start command is left on. The data log will only register and the ready trip relay actuate after the final reset.

The overload pre-alarm acts similar to a load monitor and allows the user to set a value of current (less than full load current) at which the unit will give an alarm output if a programmable relay is assigned to it, see pages 22 &23. The pre-alarm circuit is not designed to trip the starter unless the programmable relay is used but the screen will flash when the pre-alarm condition is detected.
7.0 Programmable inputs menu

When the user first enters this menu the programmable input and terminal numbers are shown.

There are four programmable inputs on terminals 7, 13, 14 and 15. The user can choose an input and then assign one program to that terminal. The program inputs are listed below and it enables the user to tailor the soft starter to a particular application.

For example, if the user needed a ‘soft’ inch facility for say, positioning purposes, an input would be chosen and inch would be assigned to that input. Therefore whenever the inch button was pressed the voltage would rise to the inch level setting.

ONLY ONE INPUT PER PROGRAM

The table shown lists the available program inputs.

- **INCH** Soft inch, can be used for positioning, the user needs to set the voltage level.
- **RESET RUN HOURS** A momentary contact on the program input will reset the hour counter to zero.
- **EXT TRIP 1** This is a delay on de-energisation timer. The user will have to set the time required.
- **BRAKE STOP** Under normal conditions the stop mode is set in the user menu but using this program input the brake stop mode can be turned on and off to suit operational requirements.
- **RAMP HOLD** This allows the user to halt the ramp-up for a set period.
- **START DELAY** This allows the user to set a delay after receiving a start command.
- **EXT TRIP 2** Delay on energisation timer.
- **SOFT STOP** Allows the soft stop function to be switched on and off with a program input.
- **LOCAL\REMOTE** This program input switches the stop/start control from keypad to terminals.
- **EM STOP** For use with an emergency stop button or relay. Requires a N/C contact to prevent tripping.
- **RESET** Once set, this program input will reset any fault within the soft starter. Needs a momentary N/O contact.
- **H/S OVER TEMP** If over temperature trips are fitted to the thyristor stack this input can be set to monitor the trips.
- **OVERRIDE START** If this option is chosen the user can set other values for starting the motor so that when the programmable input is chosen the starting values alter to the override settings.
- **DIS AUTO RST** This option allows the user to disable the auto reset for certain conditions.
Circuit diagrams

NOTES

This circuit shows the user how to wire in a main contactor and control it from a programmable relay. In this case relay 'A' has been chosen and whenever a start command is given the relay will close and energise the main contactor.

NOTES

This circuit shows the user how to wire in a power factor contactor and control it from a programmable relay. In this case relay 'A' has been chosen and whenever a start command is given relay 'A' will energise 500Ms after the bypass contactor has energised and will de-energise 500Ms before the bypass contactor when a stop command is given.

NOTES

In this circuit relay 'B' is dedicated to motor overload fault. If an overload is detected the relay will changeover and illuminate the lamp or drive a slave relay.
8.0 Programmable output menu

8.1 programmable relay A

<table>
<thead>
<tr>
<th>Output Prog</th>
<th>Relay A T 26 & 27</th>
</tr>
</thead>
</table>

This is the first of two programmable relays and the user may choose to assign any one of the functions listed below to this relay.

8.2 programmable relay B

<table>
<thead>
<tr>
<th>Output Prog</th>
<th>Relay B T 33,34 & 35</th>
</tr>
</thead>
</table>

This is the second of two programmable relays and the user may choose to assign any one of the functions listed below to this relay.

8.3 programmable functions

<table>
<thead>
<tr>
<th>Output Prog Num</th>
<th>O/L Prealarm</th>
<th>Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The user has to choose the programmable relay to be used and assign a function to it. Once a relay has had a function assigned the menu structure does not allow any more functions to be accessed. The user must cancel the action assigned before the menu will show the other options available.

The relays are all rated at **10amps AC1** with a voltage withstand of 400v, 50/60hz. The relays can switch DC voltages but the switching current is reduced to 3amps. If large currents need to be switched it is recommended that a slave relay is used.

POWER FACTOR is a unique and special setting that enables the user to energise a contactor from a programmable relay so that the power factor capacitors are only charged or discharged whilst the bypass contactor is energised.

Relay ‘B’ can also be used as a second **READY/TRIP** relay.

REMEMBER

Once a function has been assigned to a relay no other functions are available.
Please note that the Engineers menu is accessed via a PIN No. and the settings can disconnect safety systems therefore:

♦ Do not leave the overload permanently disconnected.
♦ Do not change the CT ratio without contacting the Factory.
♦ Do not alter the terminal 5 delay without understanding the consequences of such an action.

THERE ARE MORE SETTINGS IN THE ENGINEERS MENU THAN ARE LISTED BUT THE USER SHOULD NOT ALTER ANY OF THESE WITHOUT CONSULTING YOUR SUPPLIER
9.0 Engineers menu

9.1 Entering pin number

TORQ-MASTER2000
ENTER PIN NO ____

9.2 Engineers menu settings

- **SET PIN MAIN** 17
- **SET PIN ENGR** 19

- **CT TRANS** —A
- **O/L IN RAMP** Y/N

- **DUTY CYCLE** STARTS PER HR 00

- **HOURS RUN** 15

- **TIME** 00:00:00
- **DATE** 00:00:00

- **SERVICE** 8750H
 - **T 5 DELAY** 00S

- **ENERGISE BYPASS CONTACTOR** 0S

- **PHASE SETTING** Y/N
- **PHASE CHECKING** Y/N

Explanation

Although all the previous menus have been designed for full user access the ENGINEERS MENU can only be opened by entering a second PIN number.

THE OPTIONS LISTED IN THIS MENU SHOULD ONLY BE ALTERED BY AUTHORISED PERSONNEL

PLEASE NOTE NOT ALL OF THE SETTINGS AVAILABLE IN THE ENGINEERS MENU ARE LISTED BELOW

‘IF IN ANY DOUBT CONSULT RALSPEED’

The PIN numbers are set at the factory and should only be altered with the permission of RALSPEED.

The current transformer ratio is set at the Factory.

There are some applications where the overload, even with the slowest trip setting, will still trip during ramp up. Using this facility the overload can be disabled during the ramp up.

The maximum duty cycle is 20 starts per hour. This is for units up to 75kw. Above that 10 per hour is normal.

If the menu is set to zero there will be no restrictions to the number of starts per hour.

This screen tells the user how many hours the soft starter has been running. This counter can be reset by holding down the up/down keys

The time and date can be altered in this screen

The first part of this screen asks the user if there is to be a service interval, and if so how many hours between services.

The second part of this screen is designed to allow a ‘ride through’ when the voltage ‘dips’. This will prevent the unit tripping.

The setting in this screen enables the user to energise the bypass contactor either earlier or later than is normal.

The user should not alter the setting from zero unless the implications are fully understood.

If the user requires the soft starter to be phase rotation sensitive then both questions should be set to YES. After the next START the unit will have logged the phase sequence and the user will have to enter and exit the menu to set the change. Thereafter the phase sequence will be checked on every start up.
10.0 Trouble shooting flow chart

The TORQ-MASTER 2000 has been designed so that the two line sixteen character display gives the user information on the running and fault status of the unit. The following flow charts will allow the user to rectify problems when the display does not give any indication of the problem or is waiting for start command or other inputs from the external control system. This flow chart also helps the user to interpret some of the specialised messages.

10.1 The soft starter does not run

Start

Are terminals selected in the options menu see page 17-5.3

No

The user must select terminals in the options menu in order that stop/start signals generated external to the soft starter can operate the unit

Yes

Has the local/remote been set in the inputs menu see 7.5 page 21

Yes

As explained in section 7.5 there are various programmable inputs so that the user can configure his control system. If, for example, program 1 has been set for local/remote and the input is set high it will have moved the control function from the terminals (remote) to the keypad (local). Therefore, the user will have to remove this input before the terminals will be active.

No

Has the stop/start controls been connected correctly. See 2.7 Page 7

No

The stop/start control is either through push buttons, relay, or switch contact. If buttons are used the START button must be connected to terminals 1 & 2. The STOP button must be connected to terminals 1 & 3. If a relay or switch contact is used the user must link 1 & 2 and switch between 1 & 3 to give start and stop functions.

Yes

CONTACT YOUR SUPPLIER
10.2 The soft starter trips on firing fault.

Start

Are any of the thyristor gate or cathode leads broken or loose?

Yes

The gate/cathode leads are connected at the Factory so unless the user has disturbed them it is very unlikely that they will be incorrect. Therefore, a FIRING FAULT will only occur if one of these leads is loose or broken so a simple repair should suffice. SEE 2.11 page 9

No

Are the thyristor gate impedances as per the test certificates?

No

It is possible that there is a faulty thyristor. Replace the thyristor and try a restart.

Yes

Make sure that the motor links in the terminal box are correct. Check the voltage of the motor.

Is the motor connected correctly?

No

Yes

Is the motor undersized for the soft starter?

No

CONTACT YOUR SUPPLIER

Yes

If the motor is not ‘matched’ to the soft starter it is possible that the motor impedance is too large and does not allow enough current to flow to enable the thyristor to latch.
10.3 The soft starter trips on overload fault.

Start

Has the correct value of FLC been entered? See 5.1 page 15

No

The full load current of the motor must be entered under the SET FLC question in the USER MENU. The motor nameplate will give the current value of the motor to be controlled.

Yes

Has the correct overload curve been chosen? See 5.1 page 15

No

There are five overload curves A,B,C,D & E. The ‘A’ curve is a fast response setting whilst the ‘E’ curve is a slow or slugged response setting. On an high inertial load the user may get a trip if an ‘A’ or ‘B’ curve has been chosen.

Yes

The LCD display flashes when there is a pending fault. If the motor is overloaded the display will flash and then trip the soft starter. Check that the motor is not overloaded. Please note, however, that overload is only one of several faults that will cause the LCD display to flash.

No

Is the duty cycle of stop/start too high?

Yes

Check the number of starts per hour. If this is more than 12 per hour it can lead to the overload to trip

No

CONTACT YOUR SUPPLIER
10.4 The soft starter trips on shearpin fault.

Start

Has the correct value of SHEARPIN been set? See 6.3 Page 19

No

The SHEARPIN trip is an instantaneous over current trip. The user must set it high enough to avoid problems during ramp-up. The setting should be at least 100% above the current limit setting.

Yes

Has the motor stalled?

Yes

If the ramp-up is set to VOLTAGE then the current is not limited. Therefore if the motor is stalled the current will rise to the SHEARPIN level and trip. Check and ‘free’ the motor.

No

Has the bypass contactor

Yes

If the bypass contactor has jammed in, the start command will cause the starter to attempt a direct on line start which will generate 6/7 x FLC and the unit will trip on SHEARPIN fault.

No

Is there a genuine over current condition?

Yes

If the motor is free it may be the load at fault causing the motor to stall. Check the load and ‘free’ if necessary.

No

CONTACT YOUR SUPPLIER
10.0 Trouble shooting - continued

10.5 The motor does not accelerate properly.

Start – current control

Has the correct value of Current limit been set? See 5.2

No

In order for a motor to accelerate successfully on soft start control it will need to draw at least 200 to 350% of FLC, depending on the load. Ensure that the current limit is not set too low.

Start – voltage control

Has the pedestal and ramp times been set correctly? See 5.2

No

If the ramp-up is set to VOLTAGE then the user must input the correct values in order to achieve a smooth acceleration to full speed. Pedestal should be 35-40% ramp-up 10 to 30 secs, target 90 to 100%. Other values are possible but may lead to problems.

Yes

Yes

If the motor is overloaded the soft starter will attempt to overcome the load problems but the motor may not allow the acceleration to proceed smoothly.

No

Yes

If the mains power supply is poor the acceleration current may cause the voltage to ‘dip’ and consequently the soft starter will lose control of the ramp-up.

CONTACT YOUR SUPPLIER
10.6 The motor does not soft stop properly.

Stop command

Has soft stop been chosen in the USER MENU?

No

In order for the motor to ‘Soft Stop’ correctly the soft stop option has to be set in the USER MENU. see page 17 section 5.4

Yes

Are the initial and final settings correct? See page 17 5.4

No

The initial and final settings must have values that enable the motor to soft stop correctly without undue stress to the load or motor.

Yes

Can the motor/load combination have soft stop applied to it?

No

If the motor/load combination is of very low inertia or the run down time is naturally short the soft stop option may not work properly.

Yes

Is the power supply weak?

Yes

If the mains power supply is poor the deceleration current may cause the voltage to ‘dip’ and consequently the soft starter will lose control of the ramp-down.

No

CONTACT YOUR SUPPLIER
10.0 Trouble shooting - continued

10.7 The motor does not brake stop properly.

Stop command

Has brake stop been chosen in the

No

In order for the motor to ‘Brake Stop’ correctly the brake stop option has to be set in the USER MENU.
see page 17 section 5.4

Yes

Are the volts and time settings correct? See page 17 5.4

No

The brake volts and time settings must have values that enable the motor to brake stop correctly without undue stress to the load or motor. The ramp time must also be set so that the brake volts are applied gradually

Yes

Can the motor\load combination have brake stop applied to it?

No

If the motor\load combination is of very low inertia or the run down time is naturally short the brake stop option may not work properly or be too severe

Yes

Is the power supply weak?

Yes

If the mains power supply is poor the deceleration current may cause the voltage to ‘dip’ and consequently the soft starter will lose control of the ramp-down.

No

CONTACT YOUR SUPPLIER
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC SYSTEM. ISOLATOR, EXTERNAL BYPASS CONTACTOR AND STOP\START PUSHBUTTONS</td>
<td>34</td>
</tr>
<tr>
<td>BASIC SYSTEM. ISOLATOR, EXTERNAL BYPASS CONTACTOR AND STOP\START RELAY</td>
<td>34</td>
</tr>
<tr>
<td>EMERGENCY STOP SYSTEM. EXTERNAL BYPASS CONTACTOR AND STOP\START BUTTONS</td>
<td>35</td>
</tr>
<tr>
<td>EMERGENCY STOP SYSTEM. EXTERNAL BYPASS CONTACTOR AND STOP\START RELAY</td>
<td>35</td>
</tr>
<tr>
<td>EMERGENCY STOP SYSTEM. INTEGRATED BYPASS CONTACTOR AND STOP\START BUTTONS</td>
<td>36</td>
</tr>
<tr>
<td>EMERGENCY STOP SYSTEM. INTEGRATED BYPASS CONTACTOR AND STOP\START RELAY</td>
<td>36</td>
</tr>
</tbody>
</table>

Please note that the following drawings are typical and therefore only represent a small part of the overall number of schemes that are possible.

If the user is in any doubt regarding any of the control functions of the TORQ-MASTER soft starter please contact

RALSPEED’S TECHNICAL SALES DESK @

TEL 01254 582345 (4 LINES)
FAX 01254 668414
e.mail technical@ralspeed.com

Help is also available at our website:
www.ralspeed.com